Project1: Clustering Learning Model of CCTV Image Pattern for Producing Road Hazard Meteorological Information

-    A method for real-time estimation of weather, especially the amount of rainfall, by analyzing CCTV images, is much cheaper than one using the existing expensive weather observation equipment. In this paper, we propose a method to find an estimation model function whose input is CCTV images and output is the amount of rainfall. Using CCTV images, we propose an algorithm for selecting the number and size of the region of interest optimized for rainfall estimation, generating a data pattern graph showing a clear distinction from the number of regions of interest, clustering the pattern data graphs, and estimating the amount of rainfall. Experiments using real CCTV images show that the estimation accuracy is greater than 80%.


Project2:  A generator of test data set for tactical moving objects based on velocity(2016-2021)

-               It is required to simulate the tactical moving objects such as combat plane, naval vessels, and submarine for performing performance and functional testing of the target management system. It is not possible to collect tactical moving objects data of various circumstances due to military security. To solve this problem, in this paper, we have proposed a generator of test data set for tactical moving objects. The proposed method is to classify three types of target as combat plane, naval vessels, and submarine, to generate elevation, velocity, and movement of different pattern by target types.